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The analysis of the frictional effect
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Uniaxial compression tests were performed on Gruyere and Mozzarella cheeses. It was
observed that shorter samples appeared stiffer when no lubrication was used. This
dependence on sample height was eliminated when a synthetic grease lubricant with
polytetrafluorethylene (PTFE) was used. Therefore, the true stress-strain curves, i.e. free of
frictional effects, were determined. Methods for reproducing these curves using data from
unlubricated tests were then sought. It was shown that the true stress-strain curves can be
determined by testing samples of increasing heights until the difference between
consecutive curves is negligible. The curve corresponding to the tallest sample can then be
taken to represent the true stress-strain curve. If size or shape limitations do not allow
testing of sufficiently tall samples, quadratic extrapolation of the results may be performed.
Alternatively, an iterative finite element analysis could be used. The latter is a more
accurate but more time consuming method than the extrapolation procedure. In addition it
requires that the coefficient of friction, u, is known. It was shown that the latter can be
derived from an analytical scheme. These values of u were approximately 0.1 for Gruyere
and 0.3 for Mozzarella and they were in close agreement with numerical predictions.
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1. Introduction On the other hand, the advantage of the compres-
Uniaxial compression tests on cylindrical or cubic sam-sion test over the tensile test is that it avoids the need
ples are widely used to determine the mechanical befor cutting complex dumbbell shapes and for gripping
haviour of various materials. The usual test procedur¢he sample. This is especially useful in studies of me-
involves compressing the sample between two platenshanical properties of very soft materials such as foods.
which approach each other at a constant speed. Thadeed, for food materials, uniaxial compression tests
compressive load and corresponding displacement atgave been widely used in studies whose aim is to estab-
recorded and are post processed to give the stress - strdish correlations between the mechanical behaviour and
relationship of the material. texture, e.g. [1, 2]. This is because, at present, sensory
The drawback of this test is that friction between theevaluations are the usual means of texture characterisa-
sample and the loading platens can lead to an inhomdion. This is a highly variable method, partly due to the
geneous stress - strain state in the sample. Evidence otherent subjectiveness of the method and partly due
this effect taking place is the barrel shape of the loadedo the loosely defined and abstract terms used in the
specimen. If compression is performed under condievaluation process. Mechanical properties provide an
tions where there is no friction, the deformation is ho-alternative method of characterisation which benefits
mogeneous and the sample retains its cylindrical shap&.om precise engineering terms and analysis. Specifi-
When the end faces of the sample are restricted frongally for cheese, the International Dairy Federation has
spreading because of friction, the material adjacent tgroduced a report which details many aspects of com-
the loading platens resists deformation, as opposed toression testing and the relation between instrumental
the central portion of the specimen. The effect of thesend sensory evaluation [3].
partially deformed zones is more pronounced in shorter The aim of this study was to investigate the frictional
specimens because of the overall smaller specimen vokffect on the stress - strain data derived from uniaxial
ume. This explains why, to achieve the same compressompression tests on cheese. More specifically, meth-
sion in two specimens of different heights but of equalods for quantifying the frictional conditions as well as
cross sectional area, a larger stress is required for thdetermining the true stress - strain curve from exper-
shorter sample. imental data influenced by friction were sought. Both
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analytical and numerical solutions to the problem were %

considered and verified using experimental data. 80 /
70 1

2. Experiments 7 60
The materials used were Processed Mozzarella (2397 5¢ 1

fat, 16.75% protein, 50% moisture) and Gruyere (32% 5 40 { He'im (mm)
fat, 28% protein, 34% moisture). These cheeses werz 3o | ,6,2
chosen as they are contrasting in mechanical propertie 20 11
i.e. Gruyere is stiffer and fractures at smaller strains 10 :;i

than Mozzarella. The Mozzarella cheese was suppliec o . . . ,
by The Pillsbury Company, USA, in blocks weighing 0 01 02 03 0.4 0.5
approximately 0.4 kg while a 1.8 kg block of Gruyere swein. &

was bought from a local supermarket. A wire cutter wasSrigure 1 Average stress strain curves for non lubricated Gruyere
first used to cut slices from the blocks, taking care tosamples.

ensure that the slice thickness was uniform. From these
slices, cylindrical samples of 20 mm diameter were cut 3o

using a borer.
In order to study the effect of friction, various heights %7
were tested; 5, 8, 11, 15 and 20 mm for Gruyere ancz o 1
8,11, 15 and 20 mm for Mozzarella. These are nominaZ /D,/
dimensions. The exact height of each sample was re; ° T ,
corded within0.5 mm prior to testing. For each height £ ., He"iht;mm’
a minimum of three replicate samples were tested. 11
The experiments were performed at room tempera 2] =15
ture using a 4466 Instron testing machinehnat1 kN 0 ‘ . . \ . o
load cell. The crosshead speed which was constant du 0 0.1 0.2 0.3 0.4 05 06 07
ing any one test, was adjusted according to the sampl. strain, &

he'ght such th_a'F .a” Samples were teSte.d at the arb'Ifigure 2 Average stress strain curves for non lubricated Mozzarella
trarily chosen initial strain rate of 0.72 mih There- samples.

fore the crosshead speeds were 3.6, 5.8, 7.9, 10.8 and
14.4 mm/min for the heights of 5, 8, 11, 15and 20 mm
respectively. Two frictional conditions were examined ) |
by performing two series of tests for each cheese. |
Firstly, tests were performed where no lubricant was_ .|
applied to the loading platen - sample interface befores

testing. Secondly, Superlube (Loctite Corporation), azx, .| Height (mm)

multi-purpose synthetic grease lubricant with polyte- g a0 | -5

trafluorethylene (PTFE), was spread in a thin layer on =8

the loading platens prior to testing. 201 i:;
Corresponding values of loa®, and deflectiong, %7 20

were recorded on a PC connected to the testing ma ° 01 on 03 s 05

chine. These were used to calculate the mean stpess, strain, £

and straing, from:
Figure 3 Average stress strain curves for lubricated Gruyere samples.

Ph
p= ZRPH (1)
The stress - strain curves for Gruyere and Mozzarella
and when no lubrication was used are shown in Figs 1 and 2
h respectively. For each nominal height, an average curve
e=—In a (2)  obtained from all samples is shown. The height effect

is evident; shorter samples led to a higher stress - strain
whereH is the original heightR is the original radius curve, i.e. the material appears stiffer. The results when

andh is the current height£ H — §8). Note that Equa- Superlube was used are shown in Figs 3 and 4. The
tion 1 assumes a constant volume deformation. This igffectiveness of this lubricant in eliminating frictional

a reasonable assumption for cheese and makes compeffects for both cheeses is obvious as all heights now

tations simpler [4]. The strain as defined in Equation 2ead to asingle stress - strain curve. Therefore the curves
is the true or Hencky strain and for large deformationsin Figs 3 and 4 can be assumed to represent the true
is a better estimate of the real strain in the sample thastress - strain curves of the two cheeses at the specified
engineering strain. test conditions.

During the tests, cracks were visible for Gruyere Photographs of samples during testing with and with-
around the time when the maximum pointin the stress eut lubrication are shown in Figs 5 and 6 for Gruyere
strain curve was reached. For Mozzarella, the experiand Mozzarella respectively. All samples had an initial
ments were stopped before cracks were observed. height of 8 mm. As expected from the data plotted in
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80 3. Analytical Solution
25 In this study, it was possible to eliminate frictional ef-
fects by using Superlube as a lubricant. However, there
F 20 might be other materials for which friction can not be
< s eliminated completely, e.g. bread dough. The data de-
g Height (mm) rived from the compression experiments would then be
G 101 -8 influenced by friction. A scheme which enables the cal-
5 N 1; culation of the true stress-strain curve from such data
=20 would therefore be very useful. In this section a scheme
0 x ‘ » , ‘ ‘ based on analytical solutions will be investigated.
0 o1 02 03 04 05 06 07 Friction between the workpiece and forming tools

strain, €

has been an important consideration in metalworking
Figure 4 Average stress strain curves for lubricated Mozzarellasamplesfq many years. As a result, theoretical analyses of the
compression of a flat circular disk can be found in many
textbooks, e.g. [5, 6]. The analysis considers equilib-
rium of the forces acting on the disk, as shownin Fig. 7.
The following simplifying assumptions are made:
(i) there is no barrelling of the edges of the disk, and
(i) the thickness of the disk is small enough so that
the axial compressive streggis constant through the
thickness. Coulomb friction is assumed. The following
expression fow; as a function of radial distancgeis
then derived [5]:

0, = O'oe%(a_r) 3

wherepu is the coefficient of friction andg, a andh
are corresponding values of the yield stress, radius and
height of the compressed disk.

This pressure distribution is symmetrical about the
centreline and rises to a sharp peak at the centre of the
disk. For this reason it is often called a friction hill. The
taverage stresg, acting on the disk is then obtained by
integration:

(b)
Figure 5 Deformed shape of Gruyere samples (a) unlubricated tes
(b) lubricated test.

a
_/0 2mo,r dr _oo( h 2 e 2ua .
P= ma? - 2 \ua

(4)

Using the constant volume assumption iza®h =
7 R?H and Equation 2, Equation 4 becomes:

[

o +do;

(b)

Figure 6 Deformed shape of Mozzarella samples (a) unlubricated tests
(b) lubricated tests.

Figs 1-4, the samples barrelled when no lubricant was /

used. However, the samples kept their cylindrical shape
when Superlube was used which is evidence of uniform
deformation taking place. Figure 7 Stresses on a section of a compressed disk.
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2 M R 48=0.15
Xe=0.2
* g=0.25
0g=03
+e=0.35
©e=0.4
Be=0.45
Ae=0.5
X g=0.55
X e=0.6
X g=0.65

2 30
p= @( H e_%g) |:e2;:‘_Regs . ZMRe%S _ 1:| (5) o e=0.05
H 4 > Se=01

which now givesp as a function ofi, the initial sample
dimensions and applied strain.

The terme?*/" in Equation 4 is usually approxi-
mated using the Maclaurin series expansion [7, 8]:

stress, p (kPa)

2ua 2ua 1 (2ua\® 1 /(2ua)’ . .
e =1+ 55 5(%) * 5(%) s
: ) 1/H (1/mm)
1 (2pa\"
+ -+ = — (6) Figure 8 Stress versus /H for unlubricated Mozzarella samples at
n! h different strains.

When only the first four terms of the series are used ancd ;.
substituted in Equation 4 the result is:

60 K
2 ua 2uR 3 50 | =
=opll+=— ) =001+ =—e?° 7 3 -
P °< 3h> 0( 3 H ) g, _
S
Therefore, from Equation 7, i is plotted against AH % 30 ~o- experimental lubricated
for constant values of, the data should fall on straight % ,, | ~*-equation 5
lines, whose intercepts with theaxis will give the true iZZEZIIZE ;
yield stresses as a function of strain. Furthermore, the ] - equation 11

values ofu can be calculated from the slopes of the o
lines. This is very similar to the Cook and Larke pro-
cedure [9] where the mean strggss extrapolated to

an infinite height, i.e. AH =0. The argument behind Figure 9 Comparison between extrapolated stress and experimental
this procedure is that friction effects would be negli- lubricated data for Gruyere.

gible for an infinitely tall sample. The same procedure

[¢] 0.1 0.2 0.3 0.4 0.5
strain, €

was used by the authors in earlier studies of mechanica™ 18
properties of cheese [7, 10]. 16
If one more term is retained in the series expansion, 141 —
i.e. n=4 in Equation 6, and the result is substituted g 12
in Equation 4, the following alternative relationship is ém 1 e
obtained: 5 8 , .
g 6 iz:ﬁ:;:;nnegtal lubricated
2ua 1/ua 2 4 -s- equation 7
p‘“{”s sl h)} : T,
o} T T T T T T
2/nR 1/uR s 2 0 0.1 02 03 04 0.5 06 07
= o'0|:]_ + :-—),(Wezs) + é (Wezg) :| (8) strain, &

Figure 10 Comparison between extrapolated stress and experimental

. . lubricated data for Mozzarella.
Itis clearthatfor small values gf ande, the lasttermin

Equation 8 can be ignored and Equation 7 is recovered.
Equation 8 is a quadratic polynomial if . plies that higher order terms in the Maclaurin series in
Equations 5, 7 and 8 were fitted to the data obtainedEquation 6 are negligible. The difference between the
from the experiments without lubrication. From the co-estimates from Equation 7 and those from Equation 8
efficients of the curve fit terms, values@fandu asa  increase with increasing strain. This is expected as the
function ofe were derived. last term in Equation 8 increases with strain and there-
Fig. 8 shows plots op versus (Y H) for constantval-  fore can not be ignored. The disagreement between the
ues ofe, for Mozzarella. Lines were fitted to the data lubricated curves and the analytical extrapolations in-
and the accuracy of the approximation seems reasormreases with strain for both cheeses. This could be due
able. A similar level of accuracy was also observed forto an error introduced by the simplifying assumption
Gruyere. The same data were also approximated usirthat there is no barrelling since the latter is more pro-
Equations 5 and 8. The extrapolated stress is plotted awunced for large strains.
a function of strain for all three cases in Figs 9 and 10. Estimates for the coefficient of friction for the three
The experimental results from the lubricated tests areases are shown in Figs 11 and 12. For both cheeses,
also plotted for comparison purposes. It is evident thaEquation 7 leads to higher values than Equations 5
all equations lead to stresses which are underestimatednd 8. The latter lead to similar results for reasons ex-
with Equation 7 being the worst of the three. Equa-plained above. A variation qf with ¢ is observed for
tions 5 and 8 lead to very similar estimates which im-both cheeses. Nevertheless, for Gruyere, apart from the
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0.35 4.1. Determination of stress - strain curves

031 3 (Iterative finite - element procedure)
= 025 | / A procedure for determining the stress - strain curve
g from unlubricated test data via an iterative finite el-
£ %% ement analysis was proposed by Parteder and Bunten
5 015 [12]ina study of compression of steel tested at 1280
£ o1l They tested samples of various heights without lubri-
S ~-equation 5 cation and found that the shorter samples led to higher
005 © eotons stress - strain curves as expected. A simulation of the
0 ‘ , : : i compression test was performed using finite element
0 o1 02 03 04 °5 analysis, in which sticking behaviour was assumed. For

strain, £

each height, the stress - strain curve calculated from the
Figure 11 Predicted values gi from analytical schemes for Gruyere. experimental load - deflection data was used as a first

estimate of the true stress - strain curve. This led to a

numerical load - deflection curve or force - strain curve

0.8 Frum(e). Comparison between the experimental curve
0.7 A g Fexp(€) and numerical curvéq,m(e), led to the estima-
g6 | tion of the correction factor as a function of strai(g),
.,§ 05 ie.
% 041 Fexp(s) .
8 03] C(e)=1—-——~ fori=0,1,2... (9
% 03 1(€) Fi num(e) ®)
8 0.2 ——equation 5
044 = equation wherei is the number of iterations. The correcte
ion 7 h th b f iterat Th ted
. . ‘ ‘ ‘ . *ecf“a"m 8 stress - strain curve was then calculated from:
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 o (8)
strain, oi +1(8) — 1 +I . (8) (10)
(|

Figure 12 Predicted values ofu from analytical schemes for

Mozzarella. The same iterative scheme was applied in this study for

Gruyere and Mozzarella. The values pfcalculated
from the analytical solution, i.e. 0.1 and 0.3 respec-

, ] , tively, were assumed. The classical isotropic Coulomb
first and last pointy is roughly constant at a value fiction model available in the software was used which
of 0.13 when either Equation 5 or 8 are used. Foryefines the critical shear stress at which sliding of the
Mozzarella levels off to approximately 0.3 for strains g rfaces starts as a fraction of the contact pressure, the
larger than 0.2. fraction being equal tex.

It was found that only one iteration was needed to
bring c(e) to almost zero which is in agreement with
Parteder and Bunten’s results. The corrected stress -
4. Numerical modelling strain curves for all heights are shown in Fig. 13 for

The ABAQUS commercial finite element software Mozzarella. The curve obtained from the lubricated
package [11] was used to model the compression ogxperiments is also shown for comparison purposes.
a cylindrical sample between two flat, rigid platens. !t is observed that the corrected curves corresponding
The model is axisymmetric and includes the top halfto the various sample heights are in good agreement.
of the cylinder only, since the middle surface is a plandn addition, the mean curve is very close to the lubri-
of symmetry. Four noded quadrilateral elements wer&ated curve. Very similar observations were made for
used. Gruyere, hence the results are not shown.

The boundary conditions were symmetry on the
cylinder axis ( = 0) and symmetry about ttee= 0 line. o5
A reference node on the rigid surface was displaced ir Height (mm)
thez direction such that the maximum imposed strains 2o -
matched those measured in the experiments. F

The material was assumed to behave as a lineg= '3
elastic - plastic material. The onset of plasticity, usually 3
defined by the point of non-linearity on the stress - straing
curves, was taken to be at 5% strain for both cheese:
Work hardening was used to accommodate the rise i
stress beyond the point of first yield. Incompressible ¢ ] . ; ; ; ‘
behaviour i.e. a Poisson’s ratio of 0.5 was assumed. / 0 0.1 02 03 0.4 05 08 0.7
value of 0.49 was used in the finite element model in- strain, &

St_ead to 8!V0id pOSSib_le numeric_al problems associateglyure 13 comparison between the stress-strain curves predicted from
with truly incompressible behaviour [11]. the iterative finite element procedure and lubricated curve for Mozzarella.

10 4

5 -
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TABLE | Material properties used in finite element models for 70

experimental
Gruyere 60 © u=0.0 o
‘ . ) + p=0.05 o
Elastic modulus (kPa) 393.1 Poisson's ratio 0.49 55 . 0 ue’® R
= o u=0.2 Loe . o © ¢
Yield stress (kPa) Plastic strain o 401 o nosliding o ° o ° i‘
19.7 0.000 @ o 0 ° / o
£ 30 4 a ° e ®
31.2 0.021 s / :
39.4 0.050 20 1 o g e et
o o @ ¥ 0
46.2 0.082 R ({é/f
52.4 0.117 101 0 ¢
58.0 0.153 e : : . .
63.1 0.190 0 0.5 1 1.5 2
66.5 0.231 displacement, & (mm)

Figure 14 Comparison between numerical and unlubricated experi-

. . R mental load displacement curves for 5 mm Gruyere.
TABLE Il Material properties used in finite element models for

Mozzarella
50 -
Elastic modulus (kPa) 48.0 Poisson’s ratio 0.49 jzigi;'memal Lo °
' ) . 407 o u=0.05 L
Yield stress (kPa) Plastic strain x u=0.1 n % 4 T x B
2.4 0.000 S a0 + =02 o © . °
45 0.007 a o no sliding
6.2 0.020 g
77 0.039 2291
9.0 0.062
10.1 0.089 10 1
11.1 0.118
12.0 0.150 0 . . : ‘ ;
12.8 0.183 0 05 1 15 2 25 3
13.7 0.216 displacement, & (mm)
14.5 0.248
15.4 0.279 Figure 15 Comparison between numerical and unlubricated experimen-
16.4 0.308 tal load displacement curves for 8 mm Gruyere.

with Equations 1 and 2 to obtain the plots shown in

4.2. Determination of coefficient of friction Fig. 1. Itis obvious that the coefficient of friction which
In the above section, pre-calculated valuegwoflere  gives good agreement between the numerical and the
used in the simulation analysis to derive the stress experimental curves is approximately 0.1.
strain curve. In this section, the opposite procedure is The comparison between the numerical predictions
followed, i.e. the stress - strain curve determined fromand the experimental data for the 8 mm samples is
the lubricated experiments (Figs 3 and 4) was used tgshown in Fig. 15. The estimated coefficient of friction
define the mechanical behaviour of the cheese thus elis again approximately 0.1. The same valug.oivas
abling the value of. to be derived. Thisisthe valueaf  obtained from the results corresponding to the 11 mm
which leads to an agreement between the numerical argshmples (not shown). It was observed that the spread of
the unlubricated experimental load - deflection curvesthe numerical curves corresponding to the various fric-

Tables | and Il show the elastic modulus and yieldtional conditions decreased considerably with increas-
stress as a function of plastic strain for Gruyere andng sample height. Therefore, the curves corresponding
Mozzarella. to the heights of 15 mm and 20 mm were too close to

The effect of various options in the software regard-each other to enable estimatioryond hence they are
ing the definition of the mechanical interaction betweemot shown. To summarise, it is concluded that the ex-
the contact surfaces was examined. Firstly, the case waerimental data from non-lubricated experiments can
tested where no sliding occurs once contact has bedre accurately reproduced by choosing a single value of
established. This implies that the cylinder and the rigidu, i.e. © = 0.1, for all sample heights and throughout
surface are perfectly adhered to each other. Secondlihe applied normal load range. In addition, this value of
the Coulomb friction model was used withsetto val-  u is in agreement with the value of estimated from
ues satisfying @ < u < 0.4. Note thatu =0 signifies  the analytical solutiony{ =0.13).
frictionless conditions. A similar procedure was followed for Mozzarella and

The numerically derived® -5 data for a Gruyere the data for the heights of 8 and 11 mm are shown in
cylinder of height 5 mm are shown in Fig. 14. ResultsFigs 16 and 17 respectively. From both of these plots,
from five separate simulations are shown correspondthe coefficient of friction which gives an agreement
ingtou=0, u=0.05, 4 =0.1, « =0.2 and the case between the numerical and experimer®al§ data is
when the contact surfaces are sticking. The anticipatedstimated to be between 0.2 and 0.3. This agrees with
effect of increasing load with increasing coefficient of the analytical solution foi. As in the case of Gruyere,
friction is observed. On the same plot, the averBgeé  the data corresponding to the 15 and 20 mm heights
data measured from the experiments without lubrica€ould not be used to derive an estimateuads there is
tion are also shown. These are the data that were usegry little effect of friction at these heights.
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[e-]
~
(=)

—— experimental £
164 o ©=0.0 60
14{ * p=0l
© p=02 .50
124 x u=03 &
Z X
Sqo 4 H04 =40 -
o = no sliding S
@ -
g 8 1 ﬁ 30
2 64 = ——equation 11
%) ? 90
4 5 -%-iterative FEA
& +
2 0*0 ¢ 10 -o—experimental unlubricated (H=20mm)
A <
5o x ~&- gxperimental lubricated
o] T T | 0 T T T
0 1 2 3 4 5 0 0.1 0.2 0.3 04 0.5
displacement, & (mm) strain, &

Figure 16 Comparison between numerical and unlubricated experi-Figure 18 Comparison between lubricated test results, 20 mm unlubri-

mental load displacement curves for 8 mm Mozzarella. cated test results and predicted stress-strain curves for Gruyere.
16
— experimental 20
144 o p=0.0
+ u=0.2
12 A +
X u=0.3 - 15 1
= . - o Y =
=10 o no sliding [
Q ° =
G 81 510
5 g
£ 61 2 -2 equation 11
4 4 @ 5 4 - jterative FEA
2 A —e—experimental unlubricated(H=20mm)
-8-@xperimental lubricated
0 T 0 T . . . . .
0 1 2 3 4 5 6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
displacement, § (mm) strain, ¢

Figure 17 Comparison between numerical and unlubricated experi-Figure 19 Comparison between lubricated test results, 20 mm unlubri-
mental load displacement curves for 11 mm Mozzarella. cated test results and predicted stress-strain curves for Mozzarella.

5. Discussion apparent that Equation 11 yields more accurate stress -
The main problem in the analytical solution for the true strain curves than Equations 5 and 8 for both cheeses.
stress - strain curve is that it relies on extrapolation A comparison between the stress - strain curves pre-
which is an inherently inaccurate process. This is espedicted from the extrapolation procedure of Equation 11
cially true for food materials because the experimentafnd the iterative finite element procedure is shown in
dataare prone to scatter. The inaccuracy would decrea$égs 18 and 19 for Gruyere and Mozzarella respec-
if data corresponding to taller samples were availabletively. Equation 11 is chosen as it was found to be the
For example, if data from 40 mm tall samples weremost accurate from all the proposed analytical expres-
available, an extra point ay H = 0.025 would be plot-  sions. The data from the lubricated experiments and the
ted in Fig. 8. However, practical problems render suctunlubricated experiments on 20 mm tall samples are
tests not feasible, i.e. it is quite difficult to produce tall also shown. The latter are plotted in order to examine
samples with an accurate cylindrical geometry. In adwhether there is a great benefit in using any scheme to
dition, undesirable buckling effects arise at such largeextract the true stress - strain curves from unlubricated
heights. experimental data. In other words, the results from the
From Figs 1 and 2, itis evident that the difference be-tallest samples, i.¢d =20 mm, might be almost as ac-
tween successive stress - strain curves corresponding ¢oirate and preferable as they require no further analysis.
different heights reduces as the height increases. Theréideed, it is observed that there is very little difference
fore, asthe sample height approaches infinity, the differbetween the predictive scheme results and the 20 mm
ence between successive stress - strain curves would bi@lubricated data for both cheeses. Therefore it is con-
almost zero. Mathematically, this would correspond tocluded that for the two cheeses examined in this study,
aminimum pointinthe curve gbvs. 1/H at1/H =0.  there is not a big gain in accuracy when the analytical
Therefore, it was decided to fit a quadratic polynomialor iterative numerical schemes are used.
to thep vs. 1/H data of the form: Contrary to expectation, it is observed in Fig. 18
that the lubricated curve is higher than the unlubri-
2 cated curve at strains larger than 0.35. This is due to
p=oo+ B(ﬁ) (11) " the non-uniform stress distribution in the barrelled sam-
ples which leads to localised highly stressed zones. As
whereB is a constant. Note that Equation 11 is incom-a result, non-lubricated samples fail at smaller applied
patible with the analytical solution, i.e. Equation 8. As astrains than lubricated samples. This was observed ex-
result, no calculations gi are possible. Nevertheless, perimentally. The argument is further supported by the
the data were re-analysed and the extrapolated streapparent shift of the maximum pointin the curves to the
as a function of strain is shown in Figs 9 and 10. It isleft, i.e. to smaller strains. The maximum point marks
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the onset of cracking and the associated decrease back calculation of: accurately. Equation 7 overesti-
load. In addition, in Fig. 19, the lubricated curve for matesu especially in the case of Mozzarella. This is
Mozzarella seems to approach the unlubricated curvexpected as the linear approximation in Equation 7 will
as strain increases. This could be due to the loss déad to a larger error for larger valuesofinds. Equa-
effectiveness of the lubricant at very large strains, i.etion 8 also leads to an overestimatedor Mozzarella
the lubricant is essentially squeezed out of the contacit large strains even though by a much smaller amount
area. than Equation 7. The predictionsfvhen experimen-
The agreement between the numerical prediction anthl data are used (Figs 11 and 12) are less accurate due to
the analytical solution regarding the coefficient of fric- the experimental scatter. Therefore, itis apparent that if
tion, u, is encouraging. Determining friction in food this scheme is to be used to determinex sufficiently
materials is of paramount importance because many irlarge amount of accurate experimental data are needed.
dustrial processes such as cutting and shredding as well The smaller value ofy for Gruyere than for
as textural attributes are greatly influenced by friction.Mozzarella could be attributed to the differing fat con-
There was however a variation in the analytical val-tent of the cheeses; Mozzarella has a fat content of 23%
ues ofu with strain, especially at small values of strain where as the corresponding value for Gruyere is 32%.
(Figs 11 and 12). This is because the mean stress versiisseems that the larger fat content in Gruyere led to a
1/H curve at small strains is very flat (see Fig. 8). Asreduction in friction and hence.
w is calculated from the slopes of this curve, a larger
error is introduced. For Gruyere, a noticeable increase .
in « was also observed for the larger strains. This wa$- Conclusion o o ,
because the samples had already failed by this point anguUPerlube was found to eliminate friction in uniax-
therefore the data at the large strains should not haviél compression tests of both Gruyere and Mozzarella.
been used in further calculations. When no lubricant was used, the stress-strain curves ap-
In order to examine the effect of the scatter inher-Peared higher for decreasing sample heights. The sam-
ent in experimental data on the analytically calculated?!€s barrelled as opposed to the uniform deformations
values ofy, it was decided to repeat the calculation 0Pserved when Superlube was used.
of 11 using the data derived from the numerical simu- The accuracy of the analytical solution for the ho-
lations instead of experimental data. The calculationgnogeneous compression of a flat circular disk in the
were performed using Equations 5, 7 and 8 as befor?resence of frlcnon was examined. The a_nalytlcal so-
Numerical data corresponding to simulations witset  !ution (Equation 5) as well as approximations (Equa-
to 0.1 and 0.3 were used for Gruyere and Mozzarelldions 7 and 8) were used together with the stress - strain
respectively. The results are shown in Figs 20 and 21c_jata 'obtalned from'the experiments WIthOU"[ lubrica-
It is observed that Equation 5 leads to fairly consgant tion, in order to derive the true stress - strain curves.
values with averages of 0.10 and 0.32 for Gruyere andt Was found that all equations led to stresses which

Mozzarella respectively. Therefore Equation 5 enabled/ere underestimated, with Equation 7 being the worst
of the three. However, the stress - strain curves calcu-

02 - lated using Equation 11 were very close to the lubri-
cated curves. This equation is based on the assumption
s that there is a minimum in the mean stress versik$ 1
= curve at YH =0.
rf—~~—~+~~9——~&/'j/ An iterative finite element analysis procedure was
— also used to derive the stress-strain curve derived from
unlubricated test data. The valueswo€alculated from
- equation 5 the analytical solution were assumed, je=0.1 for
@ equation 7 Gruyere angk = 0.3 for Mozzarella. It was found that
equation 8 the predicted stress - strain curves after the first itera-
0 o4 02 03 04 o5  tion were very close to the curves measured from the
strain, £ lubricated experiments.
Figure 20 Prediction ofu from numerical data for Gruyere. However, it was shown that for the two cheeses ex-
amined in this study, there is not a big gain in accuracy
124 when the analytical or iterative numerical schemes are
::gjiﬁ:ﬁg? s used. This is because the curve corresponding to the
" - equation 8 tallest sample from the unlubricated tests is close to
: the lubricated curve. Therefore, it is concluded that
in cases where it is not possible to find a lubricant
which will eliminate friction completely, the true stress-
strain curves can be determined from unlubricated tests
by testing samples of increasing heights until the dif-
ference between consecutive curves is negligible. The
curve corresponding to the tallest sample can then be
o o1 0208 04 05 06 07 taken to represent the true stress-strain curve. If size
strai. € or shape limitations do not allow testing of sufficiently
Figure 21 Prediction ofu from numerical data for Mozzarella. tall samples, quadratic extrapolation of the results may

coefficient of friction, x
Q

o
[

&

coefficient of friction,
o
[+>]

o
[N}

o
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then be performed (Equation 11). Alternatively, an it- 2. J. v. BoYD andP. SHERMAN, ibid. 6 (1975) 507.

erative finite element analysis can be used. The latter3.
is a more accurate but more time consuming method4
than the extrapolation procedure. In addition it requires

that the coefficient of frictiong, is known. The latter

can be calculated using an analytical scheme (Equa-
tion 5). It was shown that the values calculated from

Equation 5 agreed well with the values predicted from
the finite element analysis. Interestingly, the same an-—

alytical scheme led to very accurate values when

numerical instead of experimental data were used. This
highlights the fact that great accuracy in experimental 8-
data is needed in order to determine the coefficient of

friction with any level of confidence.
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