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Uniaxial compression tests were performed on Gruyere and Mozzarella cheeses. It was
observed that shorter samples appeared stiffer when no lubrication was used. This
dependence on sample height was eliminated when a synthetic grease lubricant with
polytetrafluorethylene (PTFE) was used. Therefore, the true stress-strain curves, i.e. free of
frictional effects, were determined. Methods for reproducing these curves using data from
unlubricated tests were then sought. It was shown that the true stress-strain curves can be
determined by testing samples of increasing heights until the difference between
consecutive curves is negligible. The curve corresponding to the tallest sample can then be
taken to represent the true stress-strain curve. If size or shape limitations do not allow
testing of sufficiently tall samples, quadratic extrapolation of the results may be performed.
Alternatively, an iterative finite element analysis could be used. The latter is a more
accurate but more time consuming method than the extrapolation procedure. In addition it
requires that the coefficient of friction, µ, is known. It was shown that the latter can be
derived from an analytical scheme. These values of µ were approximately 0.1 for Gruyere
and 0.3 for Mozzarella and they were in close agreement with numerical predictions.
C© 2001 Kluwer Academic Publishers

1. Introduction
Uniaxial compression tests on cylindrical or cubic sam-
ples are widely used to determine the mechanical be-
haviour of various materials. The usual test procedure
involves compressing the sample between two platens
which approach each other at a constant speed. The
compressive load and corresponding displacement are
recorded and are post processed to give the stress - strain
relationship of the material.

The drawback of this test is that friction between the
sample and the loading platens can lead to an inhomo-
geneous stress - strain state in the sample. Evidence of
this effect taking place is the barrel shape of the loaded
specimen. If compression is performed under condi-
tions where there is no friction, the deformation is ho-
mogeneous and the sample retains its cylindrical shape.
When the end faces of the sample are restricted from
spreading because of friction, the material adjacent to
the loading platens resists deformation, as opposed to
the central portion of the specimen. The effect of these
partially deformed zones is more pronounced in shorter
specimens because of the overall smaller specimen vol-
ume. This explains why, to achieve the same compres-
sion in two specimens of different heights but of equal
cross sectional area, a larger stress is required for the
shorter sample.

On the other hand, the advantage of the compres-
sion test over the tensile test is that it avoids the need
for cutting complex dumbbell shapes and for gripping
the sample. This is especially useful in studies of me-
chanical properties of very soft materials such as foods.
Indeed, for food materials, uniaxial compression tests
have been widely used in studies whose aim is to estab-
lish correlations between the mechanical behaviour and
texture, e.g. [1, 2]. This is because, at present, sensory
evaluations are the usual means of texture characterisa-
tion. This is a highly variable method, partly due to the
inherent subjectiveness of the method and partly due
to the loosely defined and abstract terms used in the
evaluation process. Mechanical properties provide an
alternative method of characterisation which benefits
from precise engineering terms and analysis. Specifi-
cally for cheese, the International Dairy Federation has
produced a report which details many aspects of com-
pression testing and the relation between instrumental
and sensory evaluation [3].

The aim of this study was to investigate the frictional
effect on the stress - strain data derived from uniaxial
compression tests on cheese. More specifically, meth-
ods for quantifying the frictional conditions as well as
determining the true stress - strain curve from exper-
imental data influenced by friction were sought. Both
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analytical and numerical solutions to the problem were
considered and verified using experimental data.

2. Experiments
The materials used were Processed Mozzarella (23%
fat, 16.75% protein, 50% moisture) and Gruyere (32%
fat, 28% protein, 34% moisture). These cheeses were
chosen as they are contrasting in mechanical properties
i.e. Gruyere is stiffer and fractures at smaller strains
than Mozzarella. The Mozzarella cheese was supplied
by The Pillsbury Company, USA, in blocks weighing
approximately 0.4 kg while a 1.8 kg block of Gruyere
was bought from a local supermarket. A wire cutter was
first used to cut slices from the blocks, taking care to
ensure that the slice thickness was uniform. From these
slices, cylindrical samples of 20 mm diameter were cut
using a borer.

In order to study the effect of friction, various heights
were tested; 5, 8, 11, 15 and 20 mm for Gruyere and
8, 11, 15 and 20 mm for Mozzarella. These are nominal
dimensions. The exact height of each sample was re-
corded within±0.5 mm prior to testing. For each height
a minimum of three replicate samples were tested.

The experiments were performed at room tempera-
ture using a 4466 Instron testing machine with a 1 kN
load cell. The crosshead speed which was constant dur-
ing any one test, was adjusted according to the sample
height such that all samples were tested at the arbi-
trarily chosen initial strain rate of 0.72 min−1. There-
fore the crosshead speeds were 3.6, 5.8, 7.9, 10.8 and
14.4 mm/min for the heights of 5, 8, 11, 15 and 20 mm
respectively. Two frictional conditions were examined
by performing two series of tests for each cheese.
Firstly, tests were performed where no lubricant was
applied to the loading platen - sample interface before
testing. Secondly, Superlube (Loctite Corporation), a
multi-purpose synthetic grease lubricant with polyte-
trafluorethylene (PTFE), was spread in a thin layer on
the loading platens prior to testing.

Corresponding values of load,P, and deflection,δ,
were recorded on a PC connected to the testing ma-
chine. These were used to calculate the mean stress,p,
and strain,ε, from:

p = Ph

πR2H
(1)

and

ε = −ln
h

H
(2)

whereH is the original height,R is the original radius
andh is the current height (= H − δ). Note that Equa-
tion 1 assumes a constant volume deformation. This is
a reasonable assumption for cheese and makes compu-
tations simpler [4]. The strain as defined in Equation 2
is the true or Hencky strain and for large deformations
is a better estimate of the real strain in the sample than
engineering strain.

During the tests, cracks were visible for Gruyere
around the time when the maximum point in the stress -
strain curve was reached. For Mozzarella, the experi-
ments were stopped before cracks were observed.

Figure 1 Average stress strain curves for non lubricated Gruyere
samples.

Figure 2 Average stress strain curves for non lubricated Mozzarella
samples.

Figure 3 Average stress strain curves for lubricated Gruyere samples.

The stress - strain curves for Gruyere and Mozzarella
when no lubrication was used are shown in Figs 1 and 2
respectively. For each nominal height, an average curve
obtained from all samples is shown. The height effect
is evident; shorter samples led to a higher stress - strain
curve, i.e. the material appears stiffer. The results when
Superlube was used are shown in Figs 3 and 4. The
effectiveness of this lubricant in eliminating frictional
effects for both cheeses is obvious as all heights now
lead to a single stress - strain curve. Therefore the curves
in Figs 3 and 4 can be assumed to represent the true
stress - strain curves of the two cheeses at the specified
test conditions.

Photographs of samples during testing with and with-
out lubrication are shown in Figs 5 and 6 for Gruyere
and Mozzarella respectively. All samples had an initial
height of 8 mm. As expected from the data plotted in
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Figure 4 Average stress strain curves for lubricated Mozzarella samples.

(a)

(b)

Figure 5 Deformed shape of Gruyere samples (a) unlubricated test
(b) lubricated test.

(a)

(b)

Figure 6 Deformed shape of Mozzarella samples (a) unlubricated tests
(b) lubricated tests.

Figs 1–4, the samples barrelled when no lubricant was
used. However, the samples kept their cylindrical shape
when Superlube was used which is evidence of uniform
deformation taking place.

3. Analytical Solution
In this study, it was possible to eliminate frictional ef-
fects by using Superlube as a lubricant. However, there
might be other materials for which friction can not be
eliminated completely, e.g. bread dough. The data de-
rived from the compression experiments would then be
influenced by friction. A scheme which enables the cal-
culation of the true stress-strain curve from such data
would therefore be very useful. In this section a scheme
based on analytical solutions will be investigated.

Friction between the workpiece and forming tools
has been an important consideration in metalworking
for many years. As a result, theoretical analyses of the
compression of a flat circular disk can be found in many
textbooks, e.g. [5, 6]. The analysis considers equilib-
rium of the forces acting on the disk, as shown in Fig. 7.
The following simplifying assumptions are made:
(i) there is no barrelling of the edges of the disk, and
(ii) the thickness of the disk is small enough so that
the axial compressive stressσz is constant through the
thickness. Coulomb friction is assumed. The following
expression forσz as a function of radial distancer is
then derived [5]:

σz = σ0e
2µ
h (a−r ) (3)

whereµ is the coefficient of friction andσ0, a andh
are corresponding values of the yield stress, radius and
height of the compressed disk.

This pressure distribution is symmetrical about the
centreline and rises to a sharp peak at the centre of the
disk. For this reason it is often called a friction hill. The
average stress,p, acting on the disk is then obtained by
integration:

p =

∫ a

0
2πσzr dr

πa2
= σ0

2

(
h

µa

)2[
e

2µa
h − 2µa

h
− 1

]
(4)

Using the constant volume assumption i.e.πa2h=
πR2H and Equation 2, Equation 4 becomes:

Figure 7 Stresses on a section of a compressed disk.
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p = σ0

2

(
H

µR
e−

3
2ε

)2[
e

2µR
H e

3
2 ε − 2µR

H
e

3
2ε − 1

]
(5)

which now givesp as a function ofµ, the initial sample
dimensions and applied strain.

The terme2µa/h in Equation 4 is usually approxi-
mated using the Maclaurin series expansion [7, 8]:

e
2µa

h = 1+ 2µa

h
+ 1

2!

(
2µa

h

)2

+ 1

3!

(
2µa

h

)3

+ · · · + 1

n!

(
2µa

h

)n

(6)

When only the first four terms of the series are used and
substituted in Equation 4 the result is:

p = σ0

(
1+ 2

3

µa

h

)
= σ0

(
1+ 2

3

µR

H
e

3
2ε

)
(7)

Therefore, from Equation 7, ifp is plotted against 1/H
for constant values ofε, the data should fall on straight
lines, whose intercepts with thep axis will give the true
yield stresses as a function of strain. Furthermore, the
values ofµ can be calculated from the slopes of the
lines. This is very similar to the Cook and Larke pro-
cedure [9] where the mean stressp is extrapolated to
an infinite height, i.e. 1/H = 0. The argument behind
this procedure is that friction effects would be negli-
gible for an infinitely tall sample. The same procedure
was used by the authors in earlier studies of mechanical
properties of cheese [7, 10].

If one more term is retained in the series expansion,
i.e. n= 4 in Equation 6, and the result is substituted
in Equation 4, the following alternative relationship is
obtained:

p = σ0

[
1+ 2

3

µa

h
+ 1

3

(
µa

h

)2
]

= σ0

[
1+ 2

3

(
µR

H
e

3
2ε

)
+ 1

3

(
µR

H
e

3
2ε

)2
]

(8)

It is clear that for small values ofµandε, the last term in
Equation 8 can be ignored and Equation 7 is recovered.
Equation 8 is a quadratic polynomial in 1/H .

Equations 5, 7 and 8 were fitted to the data obtained
from the experiments without lubrication. From the co-
efficients of the curve fit terms, values ofσ0 andµ as a
function ofε were derived.

Fig. 8 shows plots ofp versus (1/H ) for constant val-
ues ofε, for Mozzarella. Lines were fitted to the data
and the accuracy of the approximation seems reason-
able. A similar level of accuracy was also observed for
Gruyere. The same data were also approximated using
Equations 5 and 8. The extrapolated stress is plotted as
a function of strain for all three cases in Figs 9 and 10.
The experimental results from the lubricated tests are
also plotted for comparison purposes. It is evident that
all equations lead to stresses which are underestimated,
with Equation 7 being the worst of the three. Equa-
tions 5 and 8 lead to very similar estimates which im-

Figure 8 Stress versus 1/H for unlubricated Mozzarella samples at
different strains.

Figure 9 Comparison between extrapolated stress and experimental
lubricated data for Gruyere.

Figure 10 Comparison between extrapolated stress and experimental
lubricated data for Mozzarella.

plies that higher order terms in the Maclaurin series in
Equation 6 are negligible. The difference between the
estimates from Equation 7 and those from Equation 8
increase with increasing strain. This is expected as the
last term in Equation 8 increases with strain and there-
fore can not be ignored. The disagreement between the
lubricated curves and the analytical extrapolations in-
creases with strain for both cheeses. This could be due
to an error introduced by the simplifying assumption
that there is no barrelling since the latter is more pro-
nounced for large strains.

Estimates for the coefficient of friction for the three
cases are shown in Figs 11 and 12. For both cheeses,
Equation 7 leads to higherµ values than Equations 5
and 8. The latter lead to similar results for reasons ex-
plained above. A variation ofµ with ε is observed for
both cheeses. Nevertheless, for Gruyere, apart from the
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Figure 11 Predicted values ofµ from analytical schemes for Gruyere.

Figure 12 Predicted values ofµ from analytical schemes for
Mozzarella.

first and last point,µ is roughly constant at a value
of 0.13 when either Equation 5 or 8 are used. For
Mozzarella,µ levels off to approximately 0.3 for strains
larger than 0.2.

4. Numerical modelling
The ABAQUS commercial finite element software
package [11] was used to model the compression of
a cylindrical sample between two flat, rigid platens.
The model is axisymmetric and includes the top half
of the cylinder only, since the middle surface is a plane
of symmetry. Four noded quadrilateral elements were
used.

The boundary conditions were symmetry on the
cylinder axis (r = 0) and symmetry about thez= 0 line.
A reference node on the rigid surface was displaced in
thez direction such that the maximum imposed strains
matched those measured in the experiments.

The material was assumed to behave as a linear
elastic - plastic material. The onset of plasticity, usually
defined by the point of non-linearity on the stress - strain
curves, was taken to be at 5% strain for both cheeses.
Work hardening was used to accommodate the rise in
stress beyond the point of first yield. Incompressible
behaviour i.e. a Poisson’s ratio of 0.5 was assumed. A
value of 0.49 was used in the finite element model in-
stead to avoid possible numerical problems associated
with truly incompressible behaviour [11].

4.1. Determination of stress - strain curves
(Iterative finite - element procedure)

A procedure for determining the stress - strain curve
from unlubricated test data via an iterative finite el-
ement analysis was proposed by Parteder and Bunten
[12] in a study of compression of steel tested at 1280◦C.
They tested samples of various heights without lubri-
cation and found that the shorter samples led to higher
stress - strain curves as expected. A simulation of the
compression test was performed using finite element
analysis, in which sticking behaviour was assumed. For
each height, the stress - strain curve calculated from the
experimental load - deflection data was used as a first
estimate of the true stress - strain curve. This led to a
numerical load - deflection curve or force - strain curve
Fnum(ε). Comparison between the experimental curve
Fexp(ε) and numerical curveFnum(ε), led to the estima-
tion of the correction factor as a function of strain,c(ε),
i.e.:

ci (ε) = 1− Fexp(ε)

Fi num(ε)
for i = 0, 1, 2 . . . (9)

where i is the number of iterations. The corrected
stress - strain curve was then calculated from:

σi+1(ε) = σi (ε)

1+ ci (ε)
(10)

The same iterative scheme was applied in this study for
Gruyere and Mozzarella. The values ofµ calculated
from the analytical solution, i.e. 0.1 and 0.3 respec-
tively, were assumed. The classical isotropic Coulomb
friction model available in the software was used which
defines the critical shear stress at which sliding of the
surfaces starts as a fraction of the contact pressure, the
fraction being equal toµ.

It was found that only one iteration was needed to
bring c(ε) to almost zero which is in agreement with
Parteder and Bunten’s results. The corrected stress -
strain curves for all heights are shown in Fig. 13 for
Mozzarella. The curve obtained from the lubricated
experiments is also shown for comparison purposes.
It is observed that the corrected curves corresponding
to the various sample heights are in good agreement.
In addition, the mean curve is very close to the lubri-
cated curve. Very similar observations were made for
Gruyere, hence the results are not shown.

Figure 13 Comparison between the stress-strain curves predicted from
the iterative finite element procedure and lubricated curve for Mozzarella.
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TABLE I Material properties used in finite element models for
Gruyere

Elastic modulus (kPa) 393.1 Poisson’s ratio 0.49

Yield stress (kPa) Plastic strain
19.7 0.000
31.2 0.021
39.4 0.050
46.2 0.082
52.4 0.117
58.0 0.153
63.1 0.190
66.5 0.231

TABLE I I Material properties used in finite element models for
Mozzarella

Elastic modulus (kPa) 48.0 Poisson’s ratio 0.49

Yield stress (kPa) Plastic strain
2.4 0.000
4.5 0.007
6.2 0.020
7.7 0.039
9.0 0.062

10.1 0.089
11.1 0.118
12.0 0.150
12.8 0.183
13.7 0.216
14.5 0.248
15.4 0.279
16.4 0.308

4.2. Determination of coefficient of friction
In the above section, pre-calculated values ofµ were
used in the simulation analysis to derive the stress -
strain curve. In this section, the opposite procedure is
followed, i.e. the stress - strain curve determined from
the lubricated experiments (Figs 3 and 4) was used to
define the mechanical behaviour of the cheese thus en-
abling the value ofµ to be derived. This is the value ofµ
which leads to an agreement between the numerical and
the unlubricated experimental load - deflection curves.

Tables I and II show the elastic modulus and yield
stress as a function of plastic strain for Gruyere and
Mozzarella.

The effect of various options in the software regard-
ing the definition of the mechanical interaction between
the contact surfaces was examined. Firstly, the case was
tested where no sliding occurs once contact has been
established. This implies that the cylinder and the rigid
surface are perfectly adhered to each other. Secondly,
the Coulomb friction model was used withµ set to val-
ues satisfying 0.0≤µ≤ 0.4. Note thatµ= 0 signifies
frictionless conditions.

The numerically derivedP - δ data for a Gruyere
cylinder of height 5 mm are shown in Fig. 14. Results
from five separate simulations are shown correspond-
ing toµ= 0, µ= 0.05,µ= 0.1, µ= 0.2 and the case
when the contact surfaces are sticking. The anticipated
effect of increasing load with increasing coefficient of
friction is observed. On the same plot, the averageP - δ
data measured from the experiments without lubrica-
tion are also shown. These are the data that were used

Figure 14 Comparison between numerical and unlubricated experi-
mental load displacement curves for 5 mm Gruyere.

Figure 15 Comparison between numerical and unlubricated experimen-
tal load displacement curves for 8 mm Gruyere.

with Equations 1 and 2 to obtain the plots shown in
Fig. 1. It is obvious that the coefficient of friction which
gives good agreement between the numerical and the
experimental curves is approximately 0.1.

The comparison between the numerical predictions
and the experimental data for the 8 mm samples is
shown in Fig. 15. The estimated coefficient of friction
is again approximately 0.1. The same value ofµ was
obtained from the results corresponding to the 11 mm
samples (not shown). It was observed that the spread of
the numerical curves corresponding to the various fric-
tional conditions decreased considerably with increas-
ing sample height. Therefore, the curves corresponding
to the heights of 15 mm and 20 mm were too close to
each other to enable estimation ofµ and hence they are
not shown. To summarise, it is concluded that the ex-
perimental data from non-lubricated experiments can
be accurately reproduced by choosing a single value of
µ, i.e.µ= 0.1, for all sample heights and throughout
the applied normal load range. In addition, this value of
µ is in agreement with the value ofµ estimated from
the analytical solution (µ= 0.13).

A similar procedure was followed for Mozzarella and
the data for the heights of 8 and 11 mm are shown in
Figs 16 and 17 respectively. From both of these plots,
the coefficient of friction which gives an agreement
between the numerical and experimentalP - δ data is
estimated to be between 0.2 and 0.3. This agrees with
the analytical solution forµ. As in the case of Gruyere,
the data corresponding to the 15 and 20 mm heights
could not be used to derive an estimate ofµ as there is
very little effect of friction at these heights.
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Figure 16 Comparison between numerical and unlubricated experi-
mental load displacement curves for 8 mm Mozzarella.

Figure 17 Comparison between numerical and unlubricated experi-
mental load displacement curves for 11 mm Mozzarella.

5. Discussion
The main problem in the analytical solution for the true
stress - strain curve is that it relies on extrapolation
which is an inherently inaccurate process. This is espe-
cially true for food materials because the experimental
data are prone to scatter. The inaccuracy would decrease
if data corresponding to taller samples were available.
For example, if data from 40 mm tall samples were
available, an extra point at 1/H = 0.025 would be plot-
ted in Fig. 8. However, practical problems render such
tests not feasible, i.e. it is quite difficult to produce tall
samples with an accurate cylindrical geometry. In ad-
dition, undesirable buckling effects arise at such large
heights.

From Figs 1 and 2, it is evident that the difference be-
tween successive stress - strain curves corresponding to
different heights reduces as the height increases. There-
fore, as the sample height approaches infinity, the differ-
ence between successive stress - strain curves would be
almost zero. Mathematically, this would correspond to
a minimum point in the curve ofp vs. 1/H at 1/H = 0.
Therefore, it was decided to fit a quadratic polynomial
to the p vs. 1/H data of the form:

p = σ0+ B

(
1

H

)2

(11)

whereB is a constant. Note that Equation 11 is incom-
patible with the analytical solution, i.e. Equation 8. As a
result, no calculations ofµ are possible. Nevertheless,
the data were re-analysed and the extrapolated stress
as a function of strain is shown in Figs 9 and 10. It is

Figure 18 Comparison between lubricated test results, 20 mm unlubri-
cated test results and predicted stress-strain curves for Gruyere.

Figure 19 Comparison between lubricated test results, 20 mm unlubri-
cated test results and predicted stress-strain curves for Mozzarella.

apparent that Equation 11 yields more accurate stress -
strain curves than Equations 5 and 8 for both cheeses.

A comparison between the stress - strain curves pre-
dicted from the extrapolation procedure of Equation 11
and the iterative finite element procedure is shown in
Figs 18 and 19 for Gruyere and Mozzarella respec-
tively. Equation 11 is chosen as it was found to be the
most accurate from all the proposed analytical expres-
sions. The data from the lubricated experiments and the
unlubricated experiments on 20 mm tall samples are
also shown. The latter are plotted in order to examine
whether there is a great benefit in using any scheme to
extract the true stress - strain curves from unlubricated
experimental data. In other words, the results from the
tallest samples, i.e.H = 20 mm, might be almost as ac-
curate and preferable as they require no further analysis.
Indeed, it is observed that there is very little difference
between the predictive scheme results and the 20 mm
unlubricated data for both cheeses. Therefore it is con-
cluded that for the two cheeses examined in this study,
there is not a big gain in accuracy when the analytical
or iterative numerical schemes are used.

Contrary to expectation, it is observed in Fig. 18
that the lubricated curve is higher than the unlubri-
cated curve at strains larger than 0.35. This is due to
the non-uniform stress distribution in the barrelled sam-
ples which leads to localised highly stressed zones. As
a result, non-lubricated samples fail at smaller applied
strains than lubricated samples. This was observed ex-
perimentally. The argument is further supported by the
apparent shift of the maximum point in the curves to the
left, i.e. to smaller strains. The maximum point marks
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the onset of cracking and the associated decrease in
load. In addition, in Fig. 19, the lubricated curve for
Mozzarella seems to approach the unlubricated curve
as strain increases. This could be due to the loss of
effectiveness of the lubricant at very large strains, i.e.
the lubricant is essentially squeezed out of the contact
area.

The agreement between the numerical prediction and
the analytical solution regarding the coefficient of fric-
tion, µ, is encouraging. Determining friction in food
materials is of paramount importance because many in-
dustrial processes such as cutting and shredding as well
as textural attributes are greatly influenced by friction.
There was however a variation in the analytical val-
ues ofµwith strain, especially at small values of strain
(Figs 11 and 12). This is because the mean stress versus
1/H curve at small strains is very flat (see Fig. 8). As
µ is calculated from the slopes of this curve, a larger
error is introduced. For Gruyere, a noticeable increase
in µ was also observed for the larger strains. This was
because the samples had already failed by this point and
therefore the data at the large strains should not have
been used in further calculations.

In order to examine the effect of the scatter inher-
ent in experimental data on the analytically calculated
values ofµ, it was decided to repeat the calculation
of µ using the data derived from the numerical simu-
lations instead of experimental data. The calculations
were performed using Equations 5, 7 and 8 as before.
Numerical data corresponding to simulations withµ set
to 0.1 and 0.3 were used for Gruyere and Mozzarella
respectively. The results are shown in Figs 20 and 21.
It is observed that Equation 5 leads to fairly constantµ

values with averages of 0.10 and 0.32 for Gruyere and
Mozzarella respectively. Therefore Equation 5 enables

Figure 20 Prediction ofµ from numerical data for Gruyere.

Figure 21 Prediction ofµ from numerical data for Mozzarella.

back calculation ofµ accurately. Equation 7 overesti-
matesµ especially in the case of Mozzarella. This is
expected as the linear approximation in Equation 7 will
lead to a larger error for larger values ofµ andε. Equa-
tion 8 also leads to an overestimatedµ for Mozzarella
at large strains even though by a much smaller amount
than Equation 7. The predictions ofµwhen experimen-
tal data are used (Figs 11 and 12) are less accurate due to
the experimental scatter. Therefore, it is apparent that if
this scheme is to be used to determineµ, a sufficiently
large amount of accurate experimental data are needed.

The smaller value ofµ for Gruyere than for
Mozzarella could be attributed to the differing fat con-
tent of the cheeses; Mozzarella has a fat content of 23%
where as the corresponding value for Gruyere is 32%.
It seems that the larger fat content in Gruyere led to a
reduction in friction and henceµ.

6. Conclusion
Superlube was found to eliminate friction in uniax-
ial compression tests of both Gruyere and Mozzarella.
When no lubricant was used, the stress-strain curves ap-
peared higher for decreasing sample heights. The sam-
ples barrelled as opposed to the uniform deformations
observed when Superlube was used.

The accuracy of the analytical solution for the ho-
mogeneous compression of a flat circular disk in the
presence of friction was examined. The analytical so-
lution (Equation 5) as well as approximations (Equa-
tions 7 and 8) were used together with the stress - strain
data obtained from the experiments without lubrica-
tion, in order to derive the true stress - strain curves.
It was found that all equations led to stresses which
were underestimated, with Equation 7 being the worst
of the three. However, the stress - strain curves calcu-
lated using Equation 11 were very close to the lubri-
cated curves. This equation is based on the assumption
that there is a minimum in the mean stress versus 1/H
curve at 1/H = 0.

An iterative finite element analysis procedure was
also used to derive the stress-strain curve derived from
unlubricated test data. The values ofµ calculated from
the analytical solution were assumed, i.e.µ= 0.1 for
Gruyere andµ= 0.3 for Mozzarella. It was found that
the predicted stress - strain curves after the first itera-
tion were very close to the curves measured from the
lubricated experiments.

However, it was shown that for the two cheeses ex-
amined in this study, there is not a big gain in accuracy
when the analytical or iterative numerical schemes are
used. This is because the curve corresponding to the
tallest sample from the unlubricated tests is close to
the lubricated curve. Therefore, it is concluded that
in cases where it is not possible to find a lubricant
which will eliminate friction completely, the true stress-
strain curves can be determined from unlubricated tests
by testing samples of increasing heights until the dif-
ference between consecutive curves is negligible. The
curve corresponding to the tallest sample can then be
taken to represent the true stress-strain curve. If size
or shape limitations do not allow testing of sufficiently
tall samples, quadratic extrapolation of the results may
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then be performed (Equation 11). Alternatively, an it-
erative finite element analysis can be used. The latter
is a more accurate but more time consuming method
than the extrapolation procedure. In addition it requires
that the coefficient of friction,µ, is known. The latter
can be calculated using an analytical scheme (Equa-
tion 5). It was shown that theµ values calculated from
Equation 5 agreed well with the values predicted from
the finite element analysis. Interestingly, the same an-
alytical scheme led to very accurateµ values when
numerical instead of experimental data were used. This
highlights the fact that great accuracy in experimental
data is needed in order to determine the coefficient of
friction with any level of confidence.
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